Density‐dependent population regulation in freshwater fishes and small mammals: A literature review and insights for Ecological Risk Assessment

Author:

Accolla Chiara1,Schmolke Amelie1,Vaugeois Maxime2,Galic Nika3

Affiliation:

1. Waterborne Environmental Inc Leesburg Virginia USA

2. Syngenta Crop Protection LLC Greensboro North Carolina USA

3. Syngenta Crop Protection AG Basel Switzerland

Abstract

AbstractThe regulation of populations through density dependence (DD) has long been a central tenet of studies of ecological systems. As an important factor in regulating populations, DD is also crucial for understanding risks to populations from stressors, including its incorporation into population models applied for this purpose. However, study of density‐dependent regulation is challenging because it can occur through various mechanisms, and their identification in the field, as well as the quantification of the consequences on individuals and populations, can be difficult. We conducted a targeted literature review specifically focusing on empirical laboratory or field studies addressing negative DD in freshwater fish and small rodent populations, two vertebrate groups considered in pesticide Ecological Risk Assessment (ERA). We found that the most commonly recognized causes of negative DD were food (63% of 19 reviewed fish studies, 40% of 25 mammal studies) or space limitations (32% of mammal studies). In addition, trophic interactions were reported as causes of population regulation, with predation shaping mostly small mammal populations (36% of the mammal studies) and cannibalism impacting freshwater fish (26%). In the case of freshwater fish, 63% of the studies were experimental (i.e., with a length of weeks or months). They generally focused on the individual‐level causes and effects of DD, and had a short duration. Moreover, DD affected mostly juvenile growth and survival of fish (68%). On the other hand, studies on small mammals were mainly based on time series analyzing field population properties over longer timespans (68%). Density dependence primarily affected survival in subadult and adult mammal stages and, to a lesser extent, reproduction (60% vs. 36%). Furthermore, delayed DD was often observed (56%). We conclude by making suggestions on future research paths, providing recommendations for including DD in population models developed for ERA, and making the best use of the available data. Integr Environ Assess Manag 2023;00:1–12. © 2023 Syngenta Crop Protection. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

Publisher

Wiley

Subject

General Environmental Science,General Medicine,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3