Natural language processing for knowledge discovery and information extraction from energetics corpora

Author:

VanGessel Francis G.1,Perry Efrem1,Mohan Salil1,Barham Oliver M.1,Cavolowsky Mark1

Affiliation:

1. Naval Surface Warfare Center Indian Head Division Indian Head MD 20640 USA

Abstract

AbstractWe present a demonstration of the utility of Natural Language Processing (NLP) for aiding research into energetic materials and associated systems. The NLP method enables machine understanding of textual data, offering an automated route to knowledge discovery and information extraction from energetics text. We apply three established unsupervised NLP models: Latent Dirichlet Allocation, Word2Vec, and the Transformer to a large curated dataset of energetics‐related scientific articles. We demonstrate that each NLP algorithm is capable of identifying energetic topics and concepts, generating a language model which aligns with Subject Matter Expert knowledge. Furthermore, we present a document classification pipeline for energetics text. Our classification pipeline achieves 59–76 % accuracy depending on the NLP model used, with the highest performing Transformer model rivaling inter‐annotator agreement metrics. The NLP approaches studied in this work can identify concepts germane to energetics and therefore hold promise as a tool for accelerating energetics research efforts and energetics material development.

Funder

Office of Naval Research

Publisher

Wiley

Subject

General Chemical Engineering,General Chemistry

Reference56 articles.

1. Applying machine learning techniques to predict the properties of energetic materials

2. B. C. Barnes D. C. Elton Z. Boukouvalas D. E. Taylor W. D. Mattson M. D. Fuge P. W. Chung arXiv1807.06156 2018.

3. Locally Optimizable Joint Embedding Framework to Design Nitrogen‐Rich Molecules that are Similar but Improved

4. D. C. Elton D. Turakhia N. Reddy Z. Boukouvalas M. D. Fuge R. M. Doherty P. W. Chung arXiv1903.00415 2019.

5. M. Puerto M. Kellett R. Nikopoulou M. D. Fuge R. Doherty P. W. Chung Z. Boukouvalas arXiv2206.00773 2022.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3