Quantitative detection of aging damage of solid propellant based on frequency impedance spectroscopy combined with CARS‐SVM algorithm

Author:

Duan Leiguang1,Wang Xueren1,Zhang Binbin2ORCID,Qiang Hongfu1

Affiliation:

1. College of Missile Engineering Rocket Force University of Engineering Xi'an 710025 China

2. School of Electronic and Information Engineering Xi'an Technological University Xi'an 710021 China

Abstract

AbstractSolid propellant, as the energy source for solid rocket engines, it is of great significance to achieve accurate quantitative detection of aging damage of solid propellant. In this paper, a novel approach based on frequency impedance spectroscopy impedance combined with CARS‐SVM algorithm was proposed. First, the temperature, humidity, and pressure of environmental information around the solid rocket motor were sampled, and then the impedance at corresponding frequencies of the propellant was obtained by AD5933 chip. Second, the processed experimental data were subjected to abnormal sample detection before further variables selection using uninformative variables elimination (UVE) competitive adaptive reweighted sampling (CARS), respectively. Finally, support vector machine (SVM), UVE‐SVM and CARS‐SVM quantitative calibration methods were established. The results showed that the determination coefficient (R2), root mean square error (RMSE), and mean absolute percentage error (MAPE) of CARS‐SVM model were 0.9919, 0.7540, and 0.0480, respectively. Therefore, the results prove that impedance of solid propellant combined with CARS‐SVM model can effectively achieve high precision quantitative detection of aging damage of solid propellant, which lays a new method for the application of solid propellants aging damage in the online quantitative detection.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3