Thermal decomposition of fluorinated polymers used in plasticized explosives and munitions

Author:

Kominia Athina1,Smith James L.1,Sheehan Pamela2,Oxley Jimmie C.1ORCID

Affiliation:

1. University of Rhode Island Department of Chemistry Kingston RI USA 02881

2. Army DEVCOM AC Picatinny Arsenal New Jersey USA 07806

Abstract

AbstractA number of military explosives and munitions employ fluorinated polymers as binders or components, e. g., PBXN‐5. To determine potential environmental releases during disposal operations, the thermal decomposition of the fluorinated polymers Viton A, Kel‐F, and Teflon were examined alone and in combination with the explosive HMX. Although PBXN‐5 only contains 5 % by weight Viton A, laboratory prepared analogs were made with 5 % polymer as well as with 50 % polymer to ensure polymer decomposition products could be detected. Under air and under nitrogen decomposition was examined by SDT [simultaneous differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA)], TGA‐infrared (IR) spectrometry, and pyrolysis gas chromatography with mass spectrometric analysis (GC‐MS). All three techniques, SDT, TGA‐IR, and pyrolysis GC‐MS, suggest that decomposition of HMX could be completed at low temperature before polymer decomposition ensues. To confirm this observation, pyrolysis GC‐MS was performed at temperatures below 350 °C since above this temperature all three polymers exhibited some fluorinated decomposition products.

Funder

U.S. Army

Publisher

Wiley

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3