Affiliation:
1. School of Environment and Safety Engineering North University of China Taiyuan 030051 China
2. School of Materials Science and Engineering North University of China Taiyuan 030051 China
3. Jinxi Group Shanxi Jiangyang Chemical Co., Ltd. Taiyuan 030051 China
4. Ordnance Science and Research Academy of China Beijing 1000089 China
5. School of Chemistry and Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 China
Abstract
AbstractA new carrier explosive TNBA was batch synthesized by a chemical method. The prepared samples were characterized using SEM, EDS, XRD, IR, XPS, nuclear magnetic resonance, and elemental analysis techniques. The enthalpy of formation of TNBA was measured using a specialized calorimeter that is specially used in testing of explosives and powders. The thermal decomposition performance of TNBA was tested by DSC technology. Meanwhile, the combustion performance of TNBA was also tested. The results of characterizations showed that the prepared sample was indeed TNBA. The enthalpy of formation of TNBA was determined as ΔHf,TNBA=+48.5 kJ/mol. At a heating rate of 20 °C/min, the thermal decomposition peak of TNBA is at TP=285.3 °C, and the activation energy is EK=91 kJ/mol, which is higher than the Tp and EK values of TNT. This indicates that TNBA is a relatively easy to decompose explosive, but the decomposition rate is not fast. The critical temperature for thermal explosion of TNBA reached Tb=247 °C, which is higher than the Tb value of TNT, slightly lower than the Tb value of DNAN, and significantly higher than the Tb value of DNTF, TNAZ, and MTNP. The combustion performance test results showed that the TNBA sample has the highest combustion pressure and the highest pressurization rate; and the TNBA sample has the highest combustion temperature; however, due to the high oxygen balance, the combustion heat of TNBA samples in excess pure oxygen is not the highest.