Combustion and secondary atomization behavior of nanofuel droplets laden with hematite, magnetite and lanthanum orthoferrites nanoparticles**

Author:

Küçükosman Rıdvan1,Alper Yontar Ahmet2ORCID,Gökhan Ünlü Cumhur3,Ocakoglu Kasim4

Affiliation:

1. Department of Manufacturing Engineering School of Graduate Studies Tarsus University 33400 Tarsus Turkey

2. Department of Mechanical Engineering Faculty of Engineering Tarsus University 33400 Tarsus Turkey

3. Department of Biomedical Engineering Faculty of Technology Pamukkale University 20160 Denizli Turkey

4. Department of Engineering Fundamental Sciences Faculty of Engineering Tarsus University 33400 Tarsus Turkey

Abstract

AbstractCurrent research concerns the droplet combustion behavior of gasoline‐based nanofuel droplets containing hematite (Fe2O3), magnetite (Fe3O4) and lanthanum orthoferrites (LaFeO3, La0.5Fe1.5O3 and La0.75Fe1.25O3) perovskite type nanoparticles (NPs) at 2.5 % wt. particle loadings. The results showed that the size distribution of hematite and magnetite NPs is on the 90–100 nm scale, while the lanthanum orthoferrites NPs have a particle size distribution of 25–40 nm. The particles with the largest surface area (78,5098 m2/g) and enhanced oxygen adsorbing ability were La0.5Fe1.5O3 NPs. Droplet combustion experiments were recorded with a high speed camera and a 7.5–14 μm spectral area thermal camera. Fe3O4 and LaFeO3 NPs high agglomerate tendency allowed only a single microexplosion event in nanofuel droplets towards the end of the experiment. Only the G/La0.5Fe1.5O3 fuel droplets trended to obey the D2‐law. Nanofuel droplets containing La0.5Fe1.5O3 NPs exhibited the highest maximum flame temperature of 264 °C. The catalytic activity of lanthanum orthoferrite perovskite‐type NPs during combustion was improved due to the decrease in the La ratio in the A‐site and the increase in the Fe ratio in the B‐site.

Publisher

Wiley

Subject

General Chemical Engineering,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3