Physics‐informed Transfer Learning for Out‐of‐sample Vapor Pressure Predictions

Author:

Lansford Joshua L.12,Jensen Klavs F.2,Barnes Brian C.1ORCID

Affiliation:

1. U.S. Army Combat Capabilities Development Command (DEVCOM) Army Research Laboratory Aberdeen Proving Ground Maryland 21005 United States

2. Department of Chemical Engineering MIT Cambridge Massachusetts 02139 United States

Abstract

AbstractRecent advances have enabled machine learning methodologies developed for large datasets to be applied to the small experimental datasets typically available for chemical systems. Such advances typically involve a data‐based approach to transfer learning, where a portion of the experimental data for the property of interest is used to fine‐tune a model that is pre‐trained on computationally generated data. This transfer learning approach does not work for very small experimental datasets, where there are only enough data for model validation. Here, we develop a physics‐informed transfer learning strategy to train a directed‐message passing neural network (D‐MPNN) model, enabling extrapolation outside of the training domain. We demonstrate this approach by training a D‐MPNN model on interpolated vapor pressures and validate the model on an out‐of‐sample test set of energetic molecule vapor pressures, achieving accuracy comparable to those of experiments.

Funder

Defense Advanced Research Projects Agency

Publisher

Wiley

Subject

General Chemical Engineering,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3