Mesoscale formation and energy release characteristics of PTFE/Al reactive jet

Author:

Zheng Yuanfeng1,Zhang Hongyu1,Li Peiliang2,Zheng Zhijian3,Guo Huanguo1ORCID

Affiliation:

1. State Key Laboratory of Explosion Science and Technology Beijing Institute of Technology Beijing 100081 P. R. China

2. Beijing Institute of Space Long March Vehicle Beijing 100076 P. R. China

3. China Ship Development and Design Center Wuhan 430061 P. R. China

Abstract

AbstractIn order to investigate the mechanical formation, the mechanical‐thermo coupling mesoscale mechanism and the corresponding energy release characteristics of PTFE/Al composite material reactive jet, a mesoscale discretization model of PTFE/Al reactive liner with a mass ratio of 73.5 %/26.5 % is developed on the basis of the random delivery principle. The mesoscale numerical simulation is used to perform PTFE/Al reactive jet formation, obtaining the relative distribution characteristics of material, pressure, and temperature. The overpressure experiments for the energy release of reactive jets are conducted. The results show that there is an increasing tendency in the amount of Al particles from the jet's tip to its tail due to the velocity variance between PTFE and Al. The high temperature zones are found to be concentrated on the tip and axis of the jet, with particle deformation, collision and friction in the reactive jet accounting for the temperature rise. Moreover, the Al particle size has a significantly influence on the particle distribution and the mechanical‐thermo coupling behavior in the reactive jet, and the decrease of particle size is beneficial to the chemical reaction among the components of the reactive jet. To be more specifically, under the conditions of Al particle size of 400 μm, 600 μm and 800 μm, the overpressure peaks of reactive jet in 13 L chamber are 3.32 MPa, 2.86 MPa and 2.61 MPa, respectively. The variation of the overpressure with Al particle size obtained by experiment is consistent with the analysis of the mechanical‐thermo coupling characteristics of mesoscale numerical simulation.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3