Rapid modulation of electrostatic sensitivity and explosive performance by X‐ray radiation

Author:

Zhang Ying1,Li An1,Kong Denan1,Li Huanjing1,Wang Xianshuang1,Shan Yuheng1,He Yage1,Ren Yeping1,Zhong Lixiang1,Guo Wei1,Yang Fanzhi2,Zhou Yao23,Xia Min4,Liu Ruibin15

Affiliation:

1. Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education) Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems School of Physics Beijing Institute of Technology 100081 Beijing China

2. Advanced Research Institute of Multidisciplinary Science Beijing Institute of Technology 100081 Beijing China

3. Laser Micro/Nano Fabrication Laboratory School of Mechanical Engineering Beijing Institute of Technology 100081 Beijing China

4. Beijing Institute of Technology Key Laboratory of High Energy Density Materials (Ministry of Education) School of Materials Science and Engineering Beijing Institute of Technology 100081 Beijing China

5. Frontiers Science Center for High Energy Material (MOE) Beijing Institute of Technology 100081 Beijing China

Abstract

AbstractIt is highly desirable to actively modulate the explosive performance and sensitivity of traditional explosives, such as RDX (hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine), and HMX (cyclotetramethylene tetranitramine), especially to reduce their explosive power and electrostatic sensitivity. Herein, a new avenue is found to effectively modulate the explosive performance and electrostatic sensitivity by direct irradiation of high‐density X‐ray from synchrotron radiation. RDX as a kind of popular and high‐performance explosive, is chosen to demonstrate the modulated effectiveness. After X‐ray irradiation with different irradiation time, the detonation velocity (DV), detonation pressure (DP), heat of detonation (HoD), and electrostatic sensitivity of RDX are determined. Compared with the electrostatic sensitivity and explosive parameters of original high‐quality RDX, the maximum electrostatic sensitivity value is increased to 1061 mJ after irradiation, which is an enhancement ratio of 39.61 %. The lowest DV is 7.57 km/s (−14.27 %), the lowest DP is 16.23 GPa (−53.20 %), and the lowest HoD is 5.15 kJ/g (−9.65 %). These changes mainly originate from the changes in the structure and crystal structure of RDX molecules after irradiation, as evaluated by Scanning Electron Microscope (SEM), X‐ray Diffraction (XRD), and X‐ray Photoelectron Spectroscopy (XPS). The mechanism of RDX modulation by X‐ray is due to denitrification, which always accompanies lots of energy releases, thus impacting the electrostatic sensitivity and explosive power of RDX. Therefore, this study not only provides a new method for reducing electrostatic sensitivity to improve the safety of storage, transportation, and application of RDX, but also holds great potential to reduce explosive performance by non‐contact means.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3