Mesoscale modeling of the Shock‐to‐Detonation Transition of pressed‐HMX based on a surface regression model

Author:

Saunier Jérôme12,Chinnayya Ashwin2,Kaeshammer Elodie1,Reynaud Maxime1,Genetier Marc1

Affiliation:

1. CEA DAM, GRAMAT F-46500 Gramat France

2. Institut PPrime, UPR 3346, CNRS, ISAE-ENSMA Université de Poitiers 86360 Chasseneuil-du-Poitou France

Abstract

AbstractShock‐to‐Detonation Transition (SDT) of heterogeneous high explosives results from processes occurring at the microstructural level. Thus, mesoscale modeling is expected to allow a better comprehension of the SDT. Recent experimental evidence suggested that hotspots mainly developed on the surface of the energetic crystals, which are then consumed by the propagation of a deflagration front. In the present study, mesoscale simulations of the SDT of pressed HMX were performed. The reactive model employed consisted of igniting the surface of the crystals after the shock passage, and reconstructing the burn front propagation, using a modified Youngs’ method. In this reactive model, the velocity of the deflagration front was modeled by a pressure‐dependent law, as suggested by the literature. The simulations showed that the Single Curve Initiation principle remained valid. The parameter deflagration velocity times the surface to volume ratio was found to enable the equivalence between microstructures. This approach provides a new framework to study the SDT of heterogeneous explosives, by considering how the combustion of energetic crystals participate to the shock acceleration and transition into a detonation. This paper serves as a proof of concept, applied to the pressed HMX.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3