Study on synthesis and characterization of spherical copper(I) 5‐nitrotetrazolate (DBX‐1)

Author:

Yang Tsung‐Mao1ORCID,Lai Jia‐Tong2,Li Wen‐Hsiang3,Peng Cheng‐Hsiung4,Li Jin‐Shuh1ORCID,Lu Kai‐Tai1

Affiliation:

1. Department of Chemical and Materials Engineering Chung Cheng Institute of Technology National Defense University 33551 Taoyuan Taiwan, ROC

2. Master Program of Chemical Engineering Chung Cheng Institute of Technology National Defense University 33551 Taoyuan Taiwan, ROC

3. School of Defense Science Chung Cheng Institute of Technology National Defense University 33551 Taoyuan Taiwan, ROC

4. Department of Chemical and Materials Engineering Minghsin University of Science and Technology Hsinchu Taiwan, ROC

Abstract

AbstractTraditional primary explosives often contain heavy metals, especially toxic lead, such as lead azide (LA) and lead styphnate (LS) that can cause environmental pollution problems. Copper(I) 5‐nitrotetrazolate (DBX‐1) is a green primary explosive without toxic heavy metals, which is considered as one of the most promising alternatives to LA. DBX‐1 is usually synthesized from sodium 5‐nitrotetrazolate dihydrate (NaNT ⋅ 2H2O) and copper(I) chloride (CuCl). However, most of the synthesized products are irregular flakes with poor flowability, which affects the loadability. In this study, dextrin was used as a crystal shape modifier to improve the morphology of the synthesized product. Taguchi analysis method was used to determine the optimal experimental conditions for obtaining the spherical DBX‐1 with smaller particle size. The synthesized products were characterized by SEM, FTIR, UV‐Vis, STA TG‐DSC and VST, and their sensitivity was determined by BAM fallhammer, BAM friction tester and electrostatic spark sensitivity tester. The experiment results showed that the optimal combination of synthesis parameters was the NaNT ⋅ 2H2O concentration of 4.4 wt.%, the reaction temperature of 100 °C, the reaction time of 75 min and the additional dextrin solution of 5.0 mL. The average particle size of the synthesized spherical DBX‐1 was 33.0 μm. The decomposition activation energy was calculated by Kissinger method and Ozawa method to be 178.5 and 178.8 kJ/mol, respectively. The compound had good chemical stability. In addition, the sensitivity of spherical DBX‐1 was lower compared to that of flaky DBX‐1 and LA.

Publisher

Wiley

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3