Affiliation:
1. School of Mathematics Shandong University Jinan Shandong China
Abstract
AbstractIn this paper, a scalar auxiliary variable approach combining with a discontinuous Galerkin method is proposed to handle the gradient‐type nonlinear term. The nonlinear convection–diffusion equation is used as the model. The proposed equivalent system can effectively handle the nonlinear convection term by incorporating the spatial and temporal information, globally. With the introduced auxiliary variable, the stability of the system can be simply characterized. In the space, according to the regularity of the system, an optimal accuracy is obtained with the discontinuous Galerkin method. Two different time discretization techniques, that is, backward Euler and linearly extrapolated Crank–Nicolson schemes, are separately considered with first order and second order accuracy. The proposed schemes are unconditionally stable with proper selected parameters. For the error estimates, the optimal convergence rates are rigorously proved. In the numerical experiments, the convergence information is confirmed and a benchmark problem with shock tendency is then followed with robustness demonstration.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Science Challenge Project
Subject
Applied Mathematics,Computational Mathematics,Numerical Analysis,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献