Mesenchymal Stem Cells Expressing Insulin-like Growth Factor-I (MSCIGF) Promote Fracture Healing and Restore New Bone Formation in Irs1 Knockout Mice: Analyses of MSCIGF Autocrine and Paracrine Regenerative Effects

Author:

Granero-Moltó Froilán1,Myers Timothy J.1,Weis Jared A.1,Longobardi Lara1,Li Tieshi1,Yan Yun1,Case Natasha2,Rubin Janet2,Spagnoli Anna13

Affiliation:

1. Department of Pediatrics, Division of Pediatric Endocrinology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA

2. Department of Internal Medicine, Division of Endocrinology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA

3. Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA

Abstract

Abstract Failures of fracture repair (nonunions) occur in 10% of all fractures. The use of mesenchymal stem cells (MSC) in tissue regeneration appears to be rationale, safe, and feasible. The contributions of MSC to the reparative process can occur through autocrine and paracrine effects. The primary objective of this study is to find a novel mean, by transplanting primary cultures of bone marrow-derived MSCs expressing insulin-like growth factor-I (MSCIGF), to promote these seed-and-soil actions of MSC to fully implement their regenerative abilities in fracture repair and nonunions. MSCIGF or traceable MSCIGF-Lac-Z were transplanted into wild-type or insulin-receptor-substrate knockout (Irs1−/−) mice with a stabilized tibia fracture. Healing was assessed using biomechanical testing, microcomputed tomography (μCT), and histological analyses. We found that systemically transplanted MSCIGF through autocrine and paracrine actions improved the fracture mechanical strength and increased new bone content while accelerating mineralization. We determined that IGF-I adapted the response of transplanted MSCIGF to promote their differentiation into osteoblasts. In vitro and in vivo studies showed that IGF-I-induced osteoglastogenesis in MSCs was dependent of an intact IRS1-PI3K signaling. Furthermore, using Irs1−/− mice as a nonunion fracture model through altered IGF signaling, we demonstrated that the autocrine effect of IGF-I on MSC restored the fracture new bone formation and promoted the occurrence of a well-organized callus that bridged the gap. A callus that was basically absent in Irs1−/− left untransplanted or transplanted with MSCs. We provided evidence of effects and mechanisms for transplanted MSCIGF in fracture repair and potentially to treat nonunions.

Funder

NIH-NIDDK

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3