A systematic efficacy analysis of tuberculosis treatment with BPaL‐containing regimens using a multiscale modeling approach

Author:

Budak Maral1ORCID,Via Laura E.23,Weiner Danielle M.23,Barry Clifton E.245,Nanda Pariksheet1ORCID,Michael Gabrielle6,Mdluli Khisimuzi7,Kirschner Denise1ORCID

Affiliation:

1. Department of Microbiology and Immunology University of Michigan Medical School Ann Arbor Michigan USA

2. Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology National Institute of Allergy and Infectious Diseases (NIAID) Bethesda Maryland USA

3. Tuberculosis Imaging Program, Division of Intramural Research NIAID Bethesda Maryland USA

4. Centre for Infectious Diseases Research in Africa Institute of Infectious Disease and Molecular Medicine Observatory Republic of South Africa

5. Department of Medicine University of Cape Town Observatory Republic of South Africa

6. Molecular, Cellular and Developmental Biology University of Michigan Ann Arbor Michigan USA

7. Bill & Melinda Gates Medical Research Institute Cambridge Massachusetts USA

Abstract

AbstractTuberculosis (TB) is a life‐threatening infectious disease. The standard treatment is up to 90% effective; however, it requires the administration of four antibiotics (isoniazid, rifampicin, pyrazinamide, and ethambutol [HRZE]) over long time periods. This harsh treatment process causes adherence issues for patients because of the long treatment times and a myriad of adverse effects. Therefore, the World Health Organization has focused goals of shortening standard treatment regimens for TB in their End TB Strategy efforts, which aim to reduce TB‐related deaths by 95% by 2035. For this purpose, many novel and promising combination antibiotics are being explored that have recently been discovered, such as the bedaquiline, pretomanid, and linezolid (BPaL) regimen. As a result, testing the number of possible combinations with all possible novel regimens is beyond the limit of experimental resources. In this study, we present a unique framework that uses a primate granuloma modeling approach to screen many combination regimens that are currently under clinical and experimental exploration and assesses their efficacies to inform future studies. We tested well‐studied regimens such as HRZE and BPaL to evaluate the validity and accuracy of our framework. We also simulated additional promising combination regimens that have not been sufficiently studied clinically or experimentally, and we provide a pipeline for regimen ranking based on their efficacies in granulomas. Furthermore, we showed a correlation between simulation rankings and new marmoset data rankings, providing evidence for the credibility of our framework. This framework can be adapted to any TB regimen and can rank any number of single or combination regimens.

Funder

National Science Foundation

Bill and Melinda Gates Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3