Data‐driven disease progression model of Parkinson's disease and effect of sex and genetic variants

Author:

Jin Ryota1ORCID,Yoshioka Hideki1ORCID,Sato Hiromi1ORCID,Hisaka Akihiro1ORCID

Affiliation:

1. Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences Chiba University Chiba Japan

Abstract

AbstractAs Parkinson's disease (PD) progresses, there are multiple biomarker changes, and sex and genetic variants may influence the rate of progression. Data‐driven, long‐term disease progression model analysis may provide precise knowledge of the relationships between these risk factors and progression and would allow for the selection of appropriate diagnosis and treatment according to disease progression. To construct a long‐term disease progression model of PD based on multiple biomarkers and evaluate the effects of sex and leucine‐rich repeat kinase 2 (LRRK2) mutations, a technique derived from the nonlinear mixed‐effects model (Statistical Restoration of Fragmented Time course [SReFT]) was applied to datasets of patients provided by the Parkinson's Progression Markers Initiative. Four biomarkers, including the Unified PD Rating Scale, were used, and a covariate analysis was performed to investigate the effects of sex and LRRK2‐related mutations. A model of disease progression over ~30 years was successfully developed using patient data with a median of 6 years. Covariate analysis suggested that female sex and LRRK2 G2019S mutations were associated with 21.6% and 25.4% significantly slower progression, respectively. LRRK2 rs76904798 mutation also tended to delay disease progression by 10.4% but the difference was not significant. In conclusion, a long‐term PD progression model was successfully constructed using SReFT from relatively short‐term individual patient observations and depicted nonlinear changes in relevant biomarkers and their covariates, including sex and genetic variants.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3