Full random effects models (FREM): A practical usage guide

Author:

Jonsson E. Niclas1ORCID,Nyberg Joakim1ORCID

Affiliation:

1. Pharmetheus AB Uppsala Sweden

Abstract

AbstractThe full random‐effects model (FREM) is an innovative and relatively novel covariate modeling technique. It differs from other covariate modeling approaches in that it treats covariates as observations and captures their impact on model parameters using their covariances. These unique characteristics mean that FREM is insensitive to correlations between covariates and implicitly handles missing covariate data. In practice, this implies that covariates are less likely to be excluded from the modeling scope in light of the observed data. FREM has been shown to be a useful modeling method for small datasets, but its pre‐specification properties make it a very compelling modeling choice for late‐stage phases of drug development. The present tutorial aims to explain what FREM models are and how they can be used in practice.

Publisher

Wiley

Reference14 articles.

1. KarlssonMO.A full model approach based on the covariance matrix of parameters and covariates. InPAGE 21 (2012) Abstr 2455[www.page‐meeting.org/?abstract=2455]

2. IvaturiVD KeizerRJ KarlssonMO.A full random effects model for characterising covariate relations. InWCOP (2012) Abstract W‐152.

3. YunH SvenssonEM NiebeckerR KarlssonMO.Evaluation of FREM and FFEM including use of model linearization. InPAGE 22 (2013) Abstr 2900 (2013).www.page‐meeting.org/?abstract=2900

4. An introduction to the full random effects model

5. Covariate selection in pharmacometric analyses: a review of methods

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3