A pharmacokinetic framework describing antibiotic adsorption to cardiopulmonary bypass devices

Author:

O'Hanlon Conor J.1ORCID,Holford Nick1ORCID,Anderson Brian J.23ORCID,Greaves Mark3,Blackburn Lee2ORCID,Tingle Malcolm D.1ORCID,Hannam Jacqueline A.1ORCID

Affiliation:

1. Department of Pharmacology & Clinical Pharmacology University of Auckland Auckland New Zealand

2. Department of Anaesthesiology University of Auckland Auckland New Zealand

3. Department of Anaesthesia Auckland City Hospital Auckland New Zealand

Abstract

AbstractCardiopulmonary bypass (CPB) can alter pharmacokinetic (PK) parameters and the drug may adsorb to the CPB device, altering exposure. Cefazolin is a beta‐lactam antibiotic used for antimicrobial prophylaxis during cardiac surgery supported by CPB. Adsorption of cefazolin could result in therapeutic failure. An ex vivo study was undertaken using CPB devices primed and then dosed with cefazolin and samples were obtained over 1 hour of recirculation. Twelve experimental runs were conducted using different CPB device sizes (neonate, infant, child, and adult), device coatings (Xcoating™, Rheoparin®, PH.I.S.I.O), and priming solutions. The time course of saturable binding, using Bmax (binding capacity), Kd (dissociation constant), and T2off (half‐time of dissociation), described cefazolin adsorption. Bmax estimates for the device sizes were neonate 40.0 mg (95% CI 24.3, 67.4), infant 48.6 mg (95% CI 5.97, 80.2), child 77.8 mg (95% CI 54.9, 103), and adult 196 mg (95% CI 191, 199). The Xcoating™ Kd estimate was 139 mg/L (95% CI 27.0, 283) and the T2off estimate was 98.4 min (95% CI 66.8, 129). The Rheoparin® and PH.I.S.I.O coatings had similar binding parameters with Kd and T2off estimates of 0.169 mg/L (95% CI 0.01, 1.99) and 4.94 min (95% CI 0.17, 59.4). The Bmax was small (< 10%) relative to a typical total patient dose during cardiac surgery supported by CPB. A dose adjustment for cefazolin based solely on drug adsorption is not required. This framework could be extended to other PK studies involving CPB.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3