Joint modeling of tumor dynamics and progression‐free survival in advanced breast cancer: Leveraging data from amcenestrant early phase I–II trials

Author:

Cerou Marc1ORCID,Thai Hoai‐Thu1ORCID,Deyme Laure2ORCID,Fliscounakis‐Huynh Sophie3,Comets Emmanuelle45ORCID,Cohen Patrick6ORCID,Cartot‐Cotton Sylvaine7,Veyrat‐Follet Christine1ORCID

Affiliation:

1. Data and Data Science, Translational Disease Modeling Oncology Sanofi R&D Paris France

2. Translational Medicine & Early Development, Modeling & Simulation Sanofi R&D Montpellier France

3. ITM STAT Neuilly sur Seine France

4. IAME, Inserm Université Paris Cité Paris France

5. Irset (Institut de Recherche en Santé, Environnement et Travail) ‐ UMR_S 1085 Univ Rennes, Inserm, EHESP Rennes France

6. Oncology Development Sanofi R&D Vitry‐sur‐Seine France

7. Pharmacokinetics Dynamics and Metabolism, Translational Medicine & Early Development Sanofi R&D Chilly Mazarin France

Abstract

AbstractA joint modeling framework was developed using data from 75 patients of early amcenestrant phase I–II AMEERA‐1‐2 dose escalation and expansion cohorts. A semi‐mechanistic tumor growth inhibition (TGI) model was developed. It accounts for the dynamics of sensitive and resistant tumor cells, an exposure‐driven effect on tumor proliferation of sensitive cells, and a delay in the initiation of treatment effect to describe the time course of target lesion tumor size (TS) data. Individual treatment exposure overtime was introduced in the model using concentrations predicted by a population pharmacokinetic model of amcenestrant. This joint modeling framework integrated complex RECISTv1.1 criteria information, linked TS metrics to progression‐free survival (PFS), and was externally evaluated using the randomized phase II trial AMEERA‐3. We demonstrated that the instantaneous rate of change in TS (TS slope) was an important predictor of PFS and the developed joint model was able to predict well the PFS of amcenestrant phase II monotherapy trial using only early phase I–II data. This provides a good modeling and simulation tool to inform early development decisions.

Funder

Sanofi

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3