Deep‐NCA: A deep learning methodology for performing noncompartmental analysis of pharmacokinetic data

Author:

Liu Gengbo1ORCID,Brooks Logan1ORCID,Canty John2ORCID,Lu Dan1ORCID,Jin Jin Y.1ORCID,Lu James1ORCID

Affiliation:

1. Modeling and Simulation/Clinical Pharmacology Genentech Inc. South San Francisco California USA

2. Cancer Immunology Genentech Inc. South San Francisco California USA

Abstract

AbstractNoncompartmental analysis (NCA) is a model‐independent approach for assessing pharmacokinetics (PKs). Although the existing NCA algorithms are very well‐established and widely utilized, they suffer from low accuracies in the setting of sparse PK samples. In response, we developed Deep‐NCA, a deep learning (DL) model to improve the prediction of key noncompartmental PK parameters. Our methodology utilizes synthetic PK data for model training and uses an innovative patient‐specific normalization method for data preprocessing. Deep‐NCA demonstrated adequate performance across six previously unseen simulated drugs under multiple dosing, showcasing effective generalization. Compared to traditional NCA, Deep‐NCA exhibited superior performance for sparse PK data. This study advances the application of DL to PK studies and introduces an effective method for handling sparse PK data. With further validation and refinement, Deep‐NCA could significantly enhance the efficiency of drug development by providing more accurate NCA estimates while requiring fewer PK samples.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3