Role of berberine on angiogenesis and blood flow hemodynamics using zebrafish model

Author:

Nathan Jhansi1ORCID,Shameera Rabiathul1,Devarajan Nalini2,Perumal Elumalai3

Affiliation:

1. Zebrafish Developmental Biology Laboratory, AUKBC Research Centre for Emerging Technologies Anna University Chennai Tamil Nadu India

2. Central Research Laboratory Meenakshi Academy of Higher Education and Research (Deemed to be University) Chennai Tamil Nadu India

3. Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences Saveetha University Chennai Tamil Nadu India

Abstract

AbstractAngiogenesis and hemodynamic instability created by the irregular blood vessels causes hypoperfusion and angiogenesis‐mediated diseases. Therefore, therapies focusing on controlling angiogenesis will be a valuable approach to treat a broad spectrum of diseases. In this study, we explored the anti‐angiogenic potential of berberine (BBR) and also analyzed blood flow hemodynamics using zebrafish embryos. Zebrafish embryos treated with BBR (0.01–0.75 mM) at various doses at 1 hour post‐fertilization (hpf) developed a variety of phenotypic variations including aberrant blood vessels, tail bending, edema, and hemorrhage. Survival rates were much lower at higher dosages, and hatching rates were almost 99%, whereas control group appeared normal. Heart rate is an essential measure that has a strong association with hemodynamics. We used ImageJ software to study the heart rate of embryos treated with BBR, preceded by video processing. The resultant graph shows a significant decrease in heart rate of embryos treated with BBR in dose‐dependent manner. Also, RBC staining using o‐Dianisidine confirms the anti‐angiogenic potential of BBR by indicating the decrease in the intersegmental vessels at 0.5 and 0.75 mM treated embryos. Further, the gene expression study determined that the transcripts (vegf, vegfr2, nrp1a, hif‐1α, nos2a, nos2b, cox‐2a, and cox‐2b) measured were found to be downregulated by BBR at 0.5 mM concentration, from which we conclude that enos/vegf signaling could play an important role in modulating angiogenesis. Our data imply that BBR may be an effective compound for suppressing angiogenesis in vivo, which might be helpful in the treatment of vascular disorders like cancer and diabetic retinopathy in future.

Publisher

Wiley

Subject

Toxicology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3