Affiliation:
1. Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences Northeast Normal University Changchun China
2. Key Laboratory for Ecology and Pollution Control of Coastal Wetlands (Environmental Protection Department of Jiangsu Province), School of Environmental Science and Engineering Yancheng Institute of Technology Yancheng China
3. School of National Safety and Emergency Management Beijing Normal University Beijing China
Abstract
AbstractEarthworm incubation combined with organic fertilization is promoted as an amended measure to improve soil properties in the ecological restoration of various degraded soils. However, the impacts of earthworms on the soil aggregate size under different organic fertilization in salt‐affected soils have not yet been fully revealed. This hinders our ability to develop policies by which to alleviate soil salinization. In this study, under mesocosm experiments, we investigate the effects of earthworm (Aporrectodea trapezoides) and organic fertilization on the soil aggregate size after 16 weeks of incubation. The soil treated with clover residues showed lower earthworm survival rates and biomass compared to that treated with sheep manure. However, the soil macropores and large macroaggregate were higher in the soils treated with clover residue when earthworms were present. In addition, earthworm burrowing activities form pathways toward food patches improve the characteristics of soil macropores, and the properties of the residue itself play a decisive role. Moreover, whether earthworms are present or not significantly influences the soil macroporosity, macropore number, and soil electrical conductivity. This demonstrates that earthworms exhibit a key feature of soil physical functioning in salt‐affected soil. In conclusion, we propose that the application of earthworms with organic residues in salt‐affected soils is a priority in producing and maintaining favorable soil structure.
Funder
National Natural Science Foundation of China
China Scholarship Council
China Postdoctoral Science Foundation
Subject
Soil Science,General Environmental Science,Development,Environmental Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献