A tune sliding control algorithm for angle following of electric motor steer‐by‐wire system

Author:

He Lin1ORCID,Xu Ziang2,Wei Yujiang2,Wang Mingwei2,Huang Chunrong2,Shi Qin2

Affiliation:

1. Laboratory of Automotive Intelligence and Electrification Hefei University of Technology Hefei China

2. School of Automotive and Transportation Engineering HeFei University of Technology Hefei China

Abstract

AbstractThe sliding mode control has to design a sliding manifold for manipulating the system motion in engineering practice, making system asymptotic stability paramount. This is particularly challenging for using variable sliding manifold parameters to formulate the sliding manifold for fast convergence and precise control. While much of the research on sliding mode control has focused on constant sliding manifold parameters, comparatively little is known about the variable approach of the sliding manifold parameters. Therefore, sliding manifold parameters are treated as variables and are computed by a parameter tuning algorithm. Regarding the parameter tuning algorithm, its input is the sliding mode control law with variable sliding manifold parameters, and its output is the computed sliding manifold parameters that will be transmitted back to the sliding mode control law. Through tuning the sliding manifold parameters by an optimal method of lowest cost with the measuring value and model computing value of system states based on the historical information, the difference between the nominal model and the real system will be removed. Here we discuss a series of studies on the algorithm of tune sliding control that, collectively, develop an application of how the tune sliding controller steers the front wheels of the full self‐driving vehicle. The designed approach has been tested in a steering test vehicle to realize a good angle tracking performance of the electric motor steer‐by‐wire system.

Funder

Jiangsu Provincial Key Research and Development Program

Natural Science Foundation of Anhui Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3