Model‐free adaptive load frequency control for power systems with wind penetration under deregulation environment

Author:

Zeng Yiming12,Bu Xuhui12ORCID,Yin Yanling34ORCID

Affiliation:

1. School of Electrical Engineering and Automation Henan Polytechnic University Jiaozuo China

2. Henan Key Laboratory of Intelligent Detection and Control of Coal Mine Equipment Henan Polytechnic University Jiaozuo China

3. Center for Energy Economics Henan Polytechnic University Jiaozuo China

4. School of Business Administration Henan Polytechnic University Jiaozuo China

Abstract

AbstractWith the gradual deregulation of the power system by the power department, the power system has developed into a large‐scale and multiregional control system. Because of the power system internal complexity enhancing, the stable operation of power system becomes increasingly difficult. This paper analyzes the load frequency control problem of multiregional interconnected power system with wind energy. This study designs an improved model‐free adaptive control algorithm based on I/O data. It avoids model establishment of the multiregional power system. It also effectively solves the problem of frequency stability control under the influence of load change, introducing the generation participation matrix to simulate bilateral contracts under the power market. The dynamic evolution relationship of the system with the generation participation matrix is established, taking a three‐regional power system with wind energy as an example. Frequency fluctuations in all three regions are between . Convergence times of frequency deviation are all within 30 s, much less than the response time of load frequency control. The simulation results further demonstrate the effectiveness of the proposed algorithm, comparing the control algorithm proposed in this paper with other algorithms, which proves that the proposed algorithm has good control performance.

Funder

National Natural Science Foundation of China

Henan Provincial Science and Technology Research Project

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3