Model‐free closed‐loop wind farm control using reinforcement learning with recursive least squares

Author:

Liew Jaime1ORCID,Göçmen Tuhfe1ORCID,Lio Wai Hou1ORCID,Larsen Gunner Chr.1

Affiliation:

1. Department of Wind Energy Technical University of Denmark Roskilde Denmark

Abstract

AbstractWind farms experience significant power losses due to wake interactions between turbines. Research shows that wake steering can alleviate these losses by redirecting the flow through the farm. However, dynamic closed‐loop implementations of wake steering are rarely presented. We present a model‐free closed‐loop control method using reinforcement learning methodology known as policy gradients in combination with recursive least squares to perform real‐time wake steering in a wind farm. We present dynamic simulations of a four‐turbine wind farm row using HAWC2Farm, implementing the reinforcement learning control method for various inflow conditions and controller configurations. By controlling the three most upstream turbines, mean power gains of  and  (95% confidence interval) are observed in partial wake and full wake conditions respectively at 7.5% turbulence intensity. The study helps to bridge the gap between theoretical wind farm control and real‐world wind farm systems.

Publisher

Wiley

Subject

Renewable Energy, Sustainability and the Environment

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3