Protective potential of fresh orange juice against zinc oxide nanoparticles‐induced trans‐placental and trans‐generational toxicity in mice

Author:

Ara Chaman1,Andleeb Shagufta2,Ali Shaukat3ORCID,Majeed Barirah2,Iqbal Asia4,Arshad Madeeha2,Chaudhary Asma2,Asmatullah  1,Muzamil Aliza1

Affiliation:

1. Institute of Zoology University of Punjab Lahore Pakistan

2. Division of Science and Technology, Department of Zoology University of Education Lahore Pakistan

3. Applied Entomology and Medical Toxicology Laboratory, Department of Zoology Government College University Lahore Pakistan

4. Department of Wildlife and Ecology University of Veterinary and Animal Sciences Lahore Pakistan

Abstract

AbstractDue to the emerging applications of nanoparticles, human exposure to nanoparticles is unavoidable, particularly to zinc oxide nanoparticles (ZnO NPs), owing to their wide range of usage. The ongoing study aimed to evaluate trans‐generational toxic potential of ZnO NPs through exposure to F0 mothers, in F1 pups and F1 mature offspring and the protective potential of fresh orange juice (OJ). Twenty‐eight F0 mothers were randomly allocated into four groups (n = 7), control; untreated, dose group; exposed to ZnO NPs, dose+antidote group; coadministered ZnO NPs + OJ, antidote group; OJ, during the organogenetic period. Fifty percent of F0 mothers were subjected to cesarean sections on the 18th day of gestation and F1 pups were recovered, macro‐photographed, and dissected for liver evisceration, while 50% of F0 mothers underwent standard delivery. After parturition, F1 offspring were examined, and the liver and blood samples were extracted. Observations showed that ZnO NPs exposure in F0 mothers in preparturition and postparturition resulted in decreased body weight, increased liver weight, and elevated levels of ALT and AST significantly p ≤ .05 as compared to the control and antidote groups. Histopathological analysis of maternal livers intoxicated with NPs showed the disruptive structure of central vein, hepatocytes, and Kupffer cells in F0 mothers, while F1 pups showed morphological deviations and distorted development of the liver tissue and congestion, in contrast to the control. F1 offspring of NPs exposed mothers, even at postnatal week 8 showed pyknotic nuclei and activated Kupffer cells in the liver sections against control. But in the case of the Dose+antidote group, alterations were less severe than in the dose group. It can be concluded that exposure to ZnO NPs instigates teratogenicity and hepatotoxicity in F1 pups, F0 mothers, and F1 offspring, respectively, while fresh orange juice acts as a remedial agent against the abovementioned toxicities.

Publisher

Wiley

Subject

Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3