Repression of Zeb1 and Hypoxia Cause Sequential Mesenchymal-to-Epithelial Transition and Induction of Aid, Oct4, and Dnmt1, Leading to Immortalization and Multipotential Reprogramming of Fibroblasts in Spheres

Author:

Liu Yongqing123,Mukhopadhyay Partha3,Pisano M. Michele3,Lu Xiaoqin2,Huang Li24,Lu Qingxian12,Dean Douglas C.1235

Affiliation:

1. Molecular Targets Program, James Graham Brown Cancer Center Louisville, Kentucky, USA

2. Department of Ophthalmology Louisville, Kentucky, USA

3. Birth Defects Center, University of Louisville Health Sciences Center, Louisville, Kentucky, USA

4. School of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China

5. Department of Biochemistry and Molecular Biology Louisville, Kentucky, USA

Abstract

Abstract In this study, we demonstrate that sphere formation triggers immortalization and stable reprogramming of mouse fibroblasts. Cell contact signaling in spheres causes downregulation of the epithelial-to-mesenchymal transition transcription factor Zeb1 leading to rapid mesenchymal-to-epithelial transition. Hypoxia within spheres together with loss of Zeb1 repression synergize to cause superinduction of Hif1a, which in turn leads to induction of the DNA demethylase Aid/Aicda, demethylation of the Oct4 promoter/enhancer and multipotency. Oct4 and Nanog expression diminish when cells are removed from the hypoxic environment of spheres and placed in monolayer culture, but the cells retain multipotential capacity, demonstrating stable reprogramming and a gene expression pattern resembling adult stem cells. Oct4 has been shown to induce Dnmt1 in mesenchymal stem cells, and we link Oct4 and Dnmt1 to silencing of cell cycle inhibitory cyclin dependent kinase inhibitors and Arf, and immortalization of the reprogrammed fibroblasts. Sphere formation then represents a novel and rapid protocol for immortalization and stable reprogramming of fibroblasts to multipotency that does not require exogenous expression of a stem cell factor or a lineage-specifying transcription factor.

Funder

NIH

Institutional Development Award

National Institute of General Medical Sciences

Research to Prevent Blindness

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3