Assessing South Indian Ocean tropical cyclone characteristics in HighResMIP simulations

Author:

Pall Pardeep1ORCID,Gagnon Alexandre S.1,Bollasina Massimo A.2,Zarzycki Colin M.3,Huang Yuner4,Beckett Christopher T. S.4,Ramanantoanina Harinaivo5,Reynolds Thomas P. S.4

Affiliation:

1. School of Biological and Environmental Sciences Liverpool John Moores University Liverpool UK

2. School of GeoSciences University of Edinburgh Edinburgh UK

3. Department of Meteorology and Atmospheric Science Penn State University University Park Pennsylvania USA

4. School of Engineering University of Edinburgh Edinburgh UK

5. Université Magis Antananarivo Madagascar

Abstract

AbstractSeveral damaging tropical cyclones (TCs) have occurred recently over the South Indian Ocean (SIO) region, causing enormous social and economic losses. Yet, while many studies have examined SIO TC characteristics using observations and reanalysis, only a few have assessed these characteristics specifically for this region in climate models, and fewer have investigated their projections under climate change. Here we do this for a historical (1980–2010) and future (2020–2050) period, using multimodel simulations from the High Resolution Model Intercomparison Project, as well as examine biases in the historical period relative to a reanalysis (ERA5). The models have horizontal resolutions of 25–50 km, which has enabled an improved ability to represent tropical cyclones globally in previous studies. TempestExtremes software is employed to detect tropical storm and cyclone tracks. In cases where TempestExtremes cannot be applied due to a lack of requisite variables in a dataset, we instead examine extreme wind speeds in that dataset. For the historical period, we find considerable variation in model biases compared to ERA5, which itself exhibits realistic spatial patterns of tracks and their monthly distribution. Models do at least agree on positive biases in track frequency east of Madagascar and somewhat in the Mozambique Channel. However, the models and ERA5 only produce Category 3 tropical cyclones at best. Wind speeds for 25 km resolution models have much larger positive biases than for 50 km ones, suggesting the former can simulate even higher‐category tropical cyclones. Considerable intermodel variation is also found in track changes between the future and historical periods. No systematic intercategory pattern of change exists, and low signal‐to‐noise may obscure any such patterns in the limited timespan of available data. Thus, no meaningful conclusions can be drawn regarding changes in track intensity. Nevertheless, track frequency broadly decreases across models for the region, as does accumulated cyclone energy. An east‐to‐west shift in track location from east of Madagascar toward the Mozambique Channel is also implied by track frequency and wind speed changes. Our findings provide information to potentially improve storm resiliency in this vulnerable region.

Funder

Royal Society

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3