Prediction of relative change in free nerve growth factor following subcutaneous administration of tanezumab, a novel monoclonal antibody to nerve growth factor

Author:

Shoji Satoshi1,Suzuki Akiyuki1,Nouri Parya2,Cai Chun‐Hua2,Gaitonde Puneet2,Marshall Scott3

Affiliation:

1. Pharmacometrics Pfizer R&D Japan Tokyo Japan

2. Clinical Pharmacology Pfizer Inc. Groton Connecticut USA

3. Pharmacometrics Pfizer R&D Ltd. Sandwich UK

Abstract

AbstractTanezumab is a monoclonal antibody against nerve growth factor (NGF). We investigated tanezumab pharmacokinetic (PK)‐NGF relationships and predicted the extent of systemic free NGF suppression with target‐mediated drug disposition (TMDD) modeling using data from three pivotal phase III interventional studies (NCT02697773, NCT02709486, and NCT02528188) in patients with osteoarthritis. Patients received tanezumab 2.5 mg or 5 mg every 8 weeks (q8w) subcutaneously. A TMDD model using a previously established population PK model was used to describe plasma tanezumab and serum total NGF concentration data, and simulations were performed to predict “unobserved” free NGF versus time profiles and dose–response relationships for free NGF. A total of 2992 patients had available data for plasma tanezumab or serum total NGF concentrations and were included in the analysis; 706 of these had data for both tanezumab and total NGF concentrations. The model generally performed well to predict observed total NGF concentrations up to ~24 weeks after each dose. Simulations suggested free NGF concentration would be suppressed by ~75% (median) near the peak of tanezumab concentration and by less than 5% (median) around the trough tanezumab concentration with a tanezumab 2.5 mg q8w regimen. Free NGF concentration was predicted to return to baseline level at ~8 weeks (95% prediction interval: 5–16 weeks) after the last tanezumab dose. This model adequately described plasma tanezumab and serum total NGF concentrations following s.c. administration of tanezumab 2.5 or 5 mg q8w, allowed prediction of relative change in systemic free NGF following s.c. administration of tanezumab.

Publisher

Wiley

Subject

Pharmacology (medical),Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3