Affiliation:
1. Institute of Theoretical Physics and Astrophysics, Quantum Information Technology University of Gdańsk Gdańsk Poland
2. Faculty of Technology, Software Engineering Fırat University Elazig Turkey
3. Faculty of Technology, Materials and Metallurgical Engineering Fırat University Elazig Turkey
Abstract
AbstractDespite attempts to control the spread of human immunodeficiency virus (HIV) through the use of anti‐HIV medications, the absence of an effective vaccine continues to present a significant obstacle. In addition, the development of drug resistance by HIV underscores the necessity for computational drug discovery methods to identify novel therapies. This investigation specifically focused on employing a long short‐term memory (LSTM) variational autoencoder deep‐learning architecture for computational drug discovery in relation to HIV. Our data set comprised simplified molecular input line entry system (SMILES)–encoded compounds, which were used to train the LSTM autoencoder. Remarkably, our model achieved a training accuracy of 91%, with a data set containing 1377 compounds. Leveraging the generative model derived from the training phase, we generated potential new drugs for combating HIV and assessed their interaction with the virus using a previously developed artificial intelligence model. Lastly, we verified the drug likeliness of our computationally generated compounds in accordance with Lipinski's rule of five. Overall, our study presents a promising approach to computational drug discovery in the ongoing battle against HIV.
Subject
Pharmacology (medical),Modeling and Simulation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献