Affiliation:
1. Department of Anesthesiology Zhongshan Hospital Fudan University Shanghai China
2. Shanghai Key laboratory of Perioperative Stress and Protection Shanghai China
3. Department of Anesthesiology Shanghai Medical College Fudan University, Shanghai, China
4. Department of Anesthesiology and Perioperative Medicine The University of Texas‐MD Anderson Cancer Center Houston Texas USA
5. Anesthesiology and Surgical Oncology Research Group Houston Texas USA
Abstract
AbstractSepsis is a persistent systemic inflammatory condition involving multiple organ failures resulting from a dysregulated immune response to infection, and one of the hallmarks of sepsis is endothelial dysfunction. During its progression, neutrophils are the first line of innate immune defence against infection. Aside from traditional mechanisms, such as phagocytosis or the release of inflammatory cytokines, reactive oxygen species and other antibacterial substances, activated neutrophils also release web‐like structures composed of tangled decondensed DNA, histone, myeloperoxidase and other granules called neutrophil extracellular traps (NETs), which can efficiently ensnare bacteria in the circulation. In contrast, excessive neutrophil activation and NET release may induce endothelial cells to shift toward a pro‐inflammatory and pro‐coagulant phenotype. Furthermore, neutrophils and NETs can degrade glycocalyx on the endothelial cell surface and increase endothelium permeability. Consequently, the endothelial barrier collapses, contributing to impaired microcirculatory blood flow, tissue hypoperfusion and life‐threatening organ failure in the late phase of sepsis.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shanghai
Subject
Molecular Medicine,Medicine (miscellaneous)
Cited by
92 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献