Nanofibers from soybean hull insoluble polysaccharides as Pickering stabilizers in oil‐in‐water emulsions formulated under acidic conditions

Author:

Reta Dominguez Camila V.1,Wagner Jorge R.12,Porfiri María C.12ORCID

Affiliation:

1. Laboratorio de Investigación en Funcionalidad y Tecnología de Alimentos (LIFTA), Departamento de Ciencia y Tecnología Universidad Nacional de Quilmes, Roque Sáenz Peña 352 (B1876BXD) Buenos Aires Argentina

2. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires Argentina

Abstract

AbstractBACKGROUNDPickering emulsions are a kind of emulsion stabilized by solid particles. These particles generate a physical or mechanical barrier that provides long‐term stability to emulsion. Cellulose nanofibers are effective Pickering emulsifiers given their long length, high flexibility and entanglement capability. In this work, soybean hull insoluble polysaccharides (HIPS) were used as source of cellulose nanofibers by using a combination of chemical and mechanical treatment. The chemical composition, morphology, flow behavior, water holding capacity (WHC) and emulsifying properties of the nanofibers were studied.RESULTSNanofibers with diameters between 35 and 110 nm were obtained. The WHC increased significantly after the mechanical treatment, and the rheological behavior of the nanofibers was typical of cellulosic materials. Nanofibers were effective emulsifiers in oil‐in‐water (O/W) emulsions formulated under acidic conditions, without the need of using any additional surfactant. Emulsions were not affected by changes in the pH of the medium (3.00–5.00), and were stable to coalescence.CONCLUSIONIt is possible that cellulose nanofibers form an entangled network which acts as a mechanical steric barrier, providing stability to coalescence. These results are important for the development of effective O/W Pickering emulsifiers/stabilizers, with large applications in the food industry. © 2023 Society of Chemical Industry.

Publisher

Wiley

Subject

Nutrition and Dietetics,Agronomy and Crop Science,Food Science,Biotechnology

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3