Degradation of polycyclic aromatic hydrocarbons (PAHs) in smoked sausages by ultraviolet irradiation

Author:

Lu Jingnan1,Kong Ling1,Fang Hongmei2,Cai Kezhou1ORCID,Zhou Hui1ORCID,Xu Baocai1ORCID

Affiliation:

1. Engineering Research Center of Bio‐process, Ministry of Education Hefei University of Technology Hefei China

2. Institute of Yeji Mutton Industry Development and Research Hefei University of Technology Hefei China

Abstract

AbstractBackgroundUltraviolet (UV) irradiation has been widely employed to disinfect food, however, the efficacy of UV irradiation in degrading polycyclic aromatic hydrocarbons (PAHs) in smoked sausages has not been explored. In this article, the UV degradation ability of PAHs in smoked sausages was investigated with different UV irradiation conditions, including different irradiation powers, durations and wavelengths. The effects of UV radiation on the quality of sausages were also evaluated, and potential degradation mechanisms were elucidated.ResultsThe results showed that the irradiation duration was the primary determinant of PAHs degradation, achieving 84.4% and 84.2% degradation rates at 16 W and 32 W power for 30 min, respectively. Among the three UV wavelengths assessed, 254 nm demonstrated a significantly higher degradation rate for benzo[a]pyrene (BaP), PAH4 and PAHs compared to 365 nm and 310 nm. To further explore the degradation mechanism, UV irradiation was combined with water, 0.1 mol/L hydrogen peroxide (H2O2) and 0.1 mol/L ascorbic acid (vitamin C) coatings. The 0.1 mol/L H2O2 coating exhibited the most pronounced degradation effect, suggesting that the highly reactive oxygen hydroxyl radicals (·OH) generated by UV irradiation played a critical role in initiating redox reactions.ConclusionThis systematic investigation paves the way for developing novel strategies to eliminate PAHs or other organic contaminants from smoked sausages. © 2023 Society of Chemical Industry.

Publisher

Wiley

Subject

Nutrition and Dietetics,Agronomy and Crop Science,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3