Optimal multiwave validation of secondary use data with outcome and exposure misclassification

Author:

Lotspeich Sarah C.12ORCID,Amorim Gustavo G. C.2,Shaw Pamela A.34,Tao Ran25,Shepherd Bryan E.2

Affiliation:

1. Department of Statistical Sciences Wake Forest University Winston‐Salem 27109 North Carolina U.S.A.

2. Department of Biostatistics Vanderbilt University Medical Center Nashville 37203 Tennessee U.S.A.

3. Department of Biostatistics, Epidemiology, and Informatics University of Pennsylvania Philadelphia 19104 Pennsylvania U.S.A.

4. Biostatistics Unit Kaiser Permanente Washington Health Research Institute Seattle 98101 Washington U.S.A.

5. Vanderbilt Genetics Institute Vanderbilt University Medical Center Nashville 37232 Tennessee U.S.A.

Abstract

AbstractObservational databases provide unprecedented opportunities for secondary use in biomedical research. However, these data can be error‐prone and must be validated before use. It is usually unrealistic to validate the whole database because of resource constraints. A cost‐effective alternative is a two‐phase design that validates a subset of records enriched for information about a particular research question. We consider odds ratio estimation under differential outcome and exposure misclassification and propose optimal designs that minimize the variance of the maximum likelihood estimator. Our adaptive grid search algorithm can locate the optimal design in a computationally feasible manner. Because the optimal design relies on unknown parameters, we introduce a multiwave strategy to approximate the optimal design. We demonstrate the proposed design's efficiency gains through simulations and two large observational studies.

Funder

National Institute of Environmental Health Sciences

National Institutes of Health

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3