Sediment controls on the transition from debris flow to fluvial channels in steep mountain ranges

Author:

Neely Alexander B.1ORCID,DiBiase Roman A.12ORCID

Affiliation:

1. Department of Geosciences Pennsylvania State University University Park Pennsylvania USA

2. Earth and Environmental Systems Institute Pennsylvania State University University Park Pennsylvania USA

Abstract

AbstractSteep channel networks commonly show a transition from constant‐gradient colluvial channels associated with debris flow activity to concave‐up fluvial channels downstream. The trade‐off between debris flow and fluvial erosion in steep channels remains unclear, which obscures connections among topography, tectonics, and climate in steep landscapes. Here, we analyze steep debris‐flow‐prone channels across the western United States and observe: (1) similar maximum channel gradients across a range of catchment erosion rates and geologic settings; and (2) lengthening colluvial channels with coarsening sediment cover. Following this compilation, we hypothesize that steep channel gradients are controlled by two competing thresholds of motion for bed‐sediment cover: bed failure by mass‐wasting and fluvial entrainment. We use downstream patterns in discharge, channel geometry, and sediment size to calculate discharges needed to mobilize sediment cover by both mechanisms across channels in the San Gabriel Mountains (SGM) and northern San Jacinto Mountains (NSJM) in southern California. Across steep colluvial channels in both landscapes, decadal discharges are below fluvial entrainment thresholds but above mass‐wasting entrainment thresholds for (median) sediment sizes, consistent with recent debris flows captured by repeat imagery. Colluvial channel gradient is similar despite > 3× contrasts in surface sediment grain size. In concave‐up fluvial channels downstream, decadal discharges exceed fluvial entrainment thresholds, and mass‐wasting is not predicted on lower gradients. In both landscapes, fluvial channels steepen downstream compared to gradients needed to mobilize sediment cover, which we interpret to reflect downstream increases in sediment flux. Coarser sediment supply in the NSJM than the SGM increases fluvial entrainment thresholds, which increases total channel relief in the NSJM by (1) lengthening colluvial channels shaped by debris flows and (2) increasing fluvial channel gradients. Our compilation and downstream analysis show how differing sensitivity of fluvial and debris flow processes to sediment grain size impacts the relative relief of colluvial and fluvial regimes in headwater channel networks.

Funder

National Science Foundation

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Earth-Surface Processes,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3