Cost‐ and performance‐aware resource selection for parallel software on heterogeneous cloud

Author:

Bystrov Oleg1ORCID,Pacevič Ruslan1ORCID,Kačeniauskas Arnas12ORCID

Affiliation:

1. Department of Graphical Systems Vilnius Gediminas Technical University Vilnius Lithuania

2. Laboratory of Parallel Computing Vilnius Gediminas Technical University Vilnius Lithuania

Abstract

SummaryCloud providers offer flexible infrastructures and on‐demand services, including the capability to deploy low cost virtual resources of many different types. However, the diversity of cloud resources followed by the important trade‐off between cost and performance makes the resource selection a challenging task for users in the case of parallel communication‐intensive software. The paper presents cost‐ and performance‐aware resource selection for parallel discrete element method (DEM) software as a service (SaaS) on heterogeneous OpenStack cloud. The developed resource selection uses preliminary application‐specific benchmarks of size smaller than targeted problems and the performance prediction based on speedup of parallel computations to obtain Pareto optimal solutions and to select the best configuration of containers from user's perspective. Hybrid parallelization of DEM software is developed by using OpenCL for shared‐memory multi‐core architectures and MPI for internode communications on distributed‐memory computer clusters. Round up and proportional pricing schemes are examined and compared from a user's perspective. Lower cost of computations obtained by using the proportional pricing scheme is always preferable for users. However, the difference approaches 1.0% of the cost calculated by using proportional pricing scheme, when long lasting computations are performed. The prediction tends to underestimate the execution time of DEM SaaS, but its accuracy is sufficient to obtain the same Pareto optimal solutions by using measured and predicted execution times. Pareto front and linear scalarization propose to select configurations of containers capable of exploiting higher memory bandwidth, which is specific to memory bandwidth bound DEM computations.

Publisher

Wiley

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Theoretical Computer Science,Software

Reference43 articles.

1. Energy, performance and cost efficient cloud datacentres: A survey

2. OpenStack.https://www.openstack.org.2023.

3. KVM.https://www.linux‐kvm.org/.2023.

4. Docker.https://www.docker.com.2023.

5. A survey of mathematical models, simulation approaches and testbeds used for research in cloud computing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances into exascale computing;Concurrency and Computation: Practice and Experience;2024-02-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3