Toward a fundamental understanding of the heterogeneous multiphysics behaviors of silicon monoxide/graphite composite anodes

Author:

Gao Xiang12,Li Suli3,Xue Jiachen3,Hu Dianyang3,Xu Jun124

Affiliation:

1. Department of Mechanical Engineering and Engineering Science University of North Carolina at Charlotte Charlotte North Carolina USA

2. Vehicle Energy and Safety Laboratory (VESL), Battery Complexity, Autonomous Vehicle, and Electrification (BATT CAVE) Research Center University of North Carolina at Charlotte Charlotte North Carolina USA

3. Zhuhai CosMX Battery Co. Ltd. Zhuhai Guangdong China

4. School of Data Science University of North Carolina at Charlotte Charlotte North Carolina USA

Abstract

AbstractSilicon monoxide (SiO) (silicon [Si] mixed with silicon dioxide [SiO2])/graphite (Gr) composite material is one of the most commercially promising anode materials for the next generation of high‐energy‐density lithium‐ion batteries. The major bottleneck for SiO/Gr composite anode is the poor cyclability arising from the stress/strain behaviors due to the mismatch between two heterogenous materials during the lithiation/delithiation process. To date, a meticulous and quantitative understanding of the highly nonlinear coupling behaviors of such materials is still lacking. Herein, an electro–chemo–mechanics‐coupled detailed model containing particle geometries is established. The underlying mechanism of the regulation between SiO and Gr components during electrochemical cycling is quantitatively revealed. We discover that increasing the SiO weight percentage (wt%) reduces the utilization efficiency of the active materials at the same 1 C rate charging and enhances the hindering effects of stress‐driven flux on diffusion. In addition, the mechanical constraint demonstrates a balanced effect on the overall performance of cells and the local behaviors of particles. This study provides new insights into the fundamental interactions between SiO and Gr materials and advances the investigation methodology for the design and evaluation of next‐generation high‐energy‐density batteries.

Publisher

Wiley

Subject

Materials Chemistry,Energy (miscellaneous),Materials Science (miscellaneous),Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3