Adaptive neural network fault‐tolerant control for uncertain non‐strict feedback nonlinear system with actuator faults and state constraints

Author:

Ma Lei1ORCID,Wang Zhanshan1ORCID,Huang Chao1

Affiliation:

1. College of Information Science and Engineering Northeastern University Shenyang China

Abstract

SummaryThis article studies a neural network (NN)‐based adaptive fault‐tolerant control (FTC) scheme for uncertain non‐strict feedback systems with time‐varying state constraints and actuator faults. The introduction of asymmetric Barrier‐Lyapunov function (BLF) makes controller design more difficult due to the emergence of actuator faults and state constraints. Therefore, this article designs a fault‐tolerant controller with constraint compensation information under the backstepping control design framework to solve the state constraint asymmetry problem caused by actuator failure. By designing an improved asymmetric time‐varying BLF, the design of the state‐constrained controller will become more realistic and the constraints will be weakened. In the design process, the characteristics of the radial basis function neural network are used to avoid the algebraic ring problem. Actuator failure in this article considers deviation failure and loss of effectiveness. Based on the properties of the exponential function, the improved BLF can make the bounds of the state constraints smaller and smaller, and the bounds of the constraints can change with the desired trajectory. Simulation verified the feasibility of this control method.

Funder

National Natural Science Foundation of China

State Key Laboratory of Synthetical Automation for Process Industries

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3