Dye Removal From Tannery Wastewater Utilizing Footwear Waste: A Sustainable Approach

Author:

Shakil Saidur Rahman1,Paul Adhir Chandra2,Abdulla‐Al‐Mamun Md.1ORCID,Thirtho Sainik Roy1,Naim Mustafizur Rahman3

Affiliation:

1. Institute of Leather Engineering and Technology University of Dhaka Dhaka Bangladesh

2. Center of Polymer Systems University Institute, Tomas Bata University in Zlin Zlin Czech Republic

3. Biomedical and Toxicological Research Institute (BTRI) Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka Bangladesh

Abstract

ABSTRACTWaste‐to‐3R (reduce, reuse, and recycle) is a promising mass balance approach in the leather sector for addressing the current challenge of overproduction of rubber sole waste in the footwear industry and dye pollution in tanneries. In this study, low‐cost charcoal derived from discarded natural rubber (NR) soles was effectively employed to remove anionic and cationic dyes from a model tannery dye solution, aligning with mass balance approaches in the leather sector. Discarded rubber charcoal (DRC) was prepared at 350°C using a self‐fabricated pyrolytic cell. The resulting charcoal was then dried, ground, and separated through 40‐mesh size lab‐scale sieves, and it was subsequently employed for the removal of dyes from tannery wastewater. The dye removal performance was optimized by adjusting parameters such as dosage, pH, contact time, and concentration. The maximum adsorption capacity and removal efficiency of the anionic acid dye (AD) were found to be 158.22 mg/g and 88.39% at pH 1, respectively, while those of the cationic methylene blue dye were 166.18 mg/g and 85.53% at pH 12, respectively, between 15 and 30 min, depending on the DRC conditions. Fresh charcoal and dye‐loaded charcoal were characterized through Fourier transform infrared spectroscopy, x‐ray diffraction, Brunauer–Emmett–Teller, scanning electron microscope (SEM), and transmission electron microscope with Energy‐Dispersive X‐ray (EDX) Spectroscopy for respective functional groups and morphology studies, and zeta potential measurements were employed to characterize the charcoal surface charge. The SEM image revealed that the shape of the DRC particles resembles a honeycomb structure, with an average size of 573.56 µm. The adsorption kinetic study indicates that the Freundlich isotherm model and pseudo‐second‐order kinetics were well‐fitted for dye removal in this study. The charcoal exhibited robust stability, retaining its capacity of 57.42 mg/g of AD and 44.94 mg/g of MB dye after four reuse cycles. This resilience was observed in treatment with various desorption agents, including HCl, CH3COOH, NaOH, and C2H5OH. The findings of this study suggest that NR‐derived charcoal could be used as a successful substitute for commercial activated carbon in wastewater treatment to get rid of the acid and basic dyes of the leather industry. Based on the observed results, a plausible mechanism was also proposed.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3