Preparation and characterization of polyacrylonitrile/nitrocellulose engineering blend

Author:

Jadhav Pratibha S.1,Joshi Girish M.1ORCID,Deshmukh R. R.2

Affiliation:

1. Department of Engineering, Physics and Engineering Materials Institute of Chemical Technology Mumbai Marathwada Campus Jalna Maharashtra India

2. Department of Physics Institute of Chemical Technology Mumbai Maharashtra India

Abstract

AbstractPolyacrylonitrile (PAN) polymer blends were more in demand due to their wide range of applications. We overcome the restricted low thermal stability and poor strength for deployable blend. In the present study, we prepared PAN and nitrocellulose (NC) polymer blends by solution casting method to overcome the low loss, low dielectric properties as alternative blend for cladding purpose in communication domain. C≡N bond exclusively demonstrated the impact on blending was confirmed by Fourier‐transform infrared spectrophotometer (FTIR) and Raman microscopy measurement. Semicrystalline nature of polymer blends as a function of NC loading was determined by X‐ray diffraction (XRD). Optical polarizing microscopy (OPM) and scanning electron microscopy (SEM) analysis illustrated an appearance of micro flocculated spherulites. Blending ratio of PAN/NC demonstrated the decreased direct band gap identified by Ultraviolet spectroscopy (UV). PAN/NC proved excellent alternative as low dielectric constant and low loss as cladding medium. Blending of NC with PAN exhibited an increased hydrophilicity was confirmed by surface goniometer. Increased thermal stability of polymer blends was mapped by thermogravimetric analysis (TGA). Blend melting temperature and glass transition temperature was increased from 322°C to 334°C and 88°C to 102°C confirmed by Differential scanning calorimetry (DSC) analysis. Thermal conductivity was increased from ~0.13 to ~0.34 W/m. k for PAN/NC determined by Lee's disc probe method. Mechanical properties of blends were measured using universal testing machine (UTM). Tensile strength and Young's modulus was increased up to ~23%, and ~ 56%, whereas elongation break was decreased up to ~71% for PAN/NC blends compared to host PAN system. PAN/NC may suit promising candidate as cladding blend for communication engineering due to low loss and low dielectric constant.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3