Trisiloxane Surfactants Negatively Affect Reproductive Behaviors and Enhance Viral Replication in Honey Bees

Author:

Fine Julia D.1,Cox‐Foster Diana L.2,Moor Kyle J.3,Chen Ruiwen4,Avalos Arian5ORCID

Affiliation:

1. US Department of Agriculture‐Agricultural Research Service Invasive Species and Pollinator Health Research Unit Davis California USA

2. US Department of Agriculture‐Agricultural Research Service Pollinating Insect Research Unit Logan Utah USA

3. Utah Water Research Laboratory, Department of Civil and Environmental Engineering Utah State University Logan Utah USA

4. Department of Civil and Environmental Engineering University of Pittsburgh Pittsburgh Pennsylvania USA

5. US Department of Agriculture‐Agricultural Research Service Honey Bee Breeding, Genetics, and Physiology Research Laboratory Baton Rouge Louisiana USA

Abstract

AbstractTrisiloxane surfactants are often applied in formulated adjuvant products to blooming crops, including almonds, exposing the managed honey bees (Apis mellifera) used for pollination of these crops and persisting in colony matrices, such as bee bread. Despite this, little is known regarding the effects of trisiloxane surfactants on important aspects of colony health, such as reproduction. In the present study, we use laboratory assays to examine how exposure to field‐relevant concentrations of three trisiloxane surfactants found in commonly used adjuvant formulations affect queen oviposition rates, worker interactions with the queen, and worker susceptibility to endogenous viral pathogens. Trisiloxane surfactants were administered at 5 mg/kg in pollen supplement diet for 14 days. No effects on worker behavior or physiology could be detected, but our results demonstrate that hydroxy‐capped trisiloxane surfactants can negatively affect queen oviposition and methyl‐capped trisiloxane surfactants cause increased replication of Deformed Wing Virus in workers, suggesting that trisiloxane surfactant use while honey bees are foraging may negatively impact colony longevity and growth. Environ Toxicol Chem 2024;43:222–233. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

Funder

Project Apis m.

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Environmental Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3