Assessment of Embodied Carbon in a Tied‐Arch Bridge

Author:

Ruck Natalie1,Naraidoo Elenor1,Liu Chenying1,Kamali Mohammadreza2,Karabulut Burak2,Rossi Barbara12

Affiliation:

1. University of Oxford Oxford UK

2. KU Leuven Leuven Belgium

Abstract

AbstractThe urgent need for carbon‐neutral structures arises from the construction industry's contributions to global carbon emissions and the unprecedented rate of global warming. This paper focuses on steel tied‐arch bridges and explores the possibilities of achieving carbon‐neutral design. Firstly, a scientometric study is conducted to identify key focus areas and emerging research trends in this field. The study encompasses publications that emphasize minimizing either the cost of structures or their detrimental impact to the environment. Taking a steel tied‐arch bridge as an example, we subsequently examine its embodied carbon under different design and manufacturing factors. The study reveals that structural design modifications and the use of high‐strength steel can significantly reduce the global warming potential of the bridge's superstructure. The paper then discusses current methods to reduce (or even cancel out) the embodied carbon associated with the bridge's steel superstructure and concrete substructure. It is demonstrated that the tied‐arch bridge's total embodied carbon can be reduced to up to 82%.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3