An observer‐based composite identifier for online estimation of the Thévenin equivalent parameters of a power system

Author:

Zonetti Daniele1ORCID,Ortega Romeo2ORCID,Cisneros Rafael2,Bobtsov Alexey3ORCID,Mancilla‐David Fernando4,Gomis‐Bellmunt Oriol1

Affiliation:

1. Centre d'Innovació Tecnològica en Convertidors Estàtics i Accionaments (CITCEA), Departament d'Enginyeria Elèctrica Universitat Politècnica de Cataluny Barcelona Spain

2. Departamento Académico de Sistemas Digitales ITAM Ciudad de México Mexico

3. Department of Control Systems and Robotics ITMO University Saint‐Petersburg Russia

4. Department of Electrical Engineering University of Colorado Denver Colorado USA

Abstract

AbstractWe consider a Thévenin equivalent circuit capturing the dynamics of a power grid as seen from the point of common coupling with a power electronic converter and propose a solution to the problem of online identification of the corresponding circuit parameters. For this purpose, we first derive a linear regression model in the conventional abc coordinates that, unfortunately, suffers from severe lack of identifiability properties. In spite of this fact, we design a bounded observer‐based composite identifier that, requiring only local measurements and knowledge of the grid frequency, ensures global boundedness of the parameters estimation error and convergence to a practically small residual set. An extension that guarantees exponential convergence of these errors to zero, in the case that the grid is dominantly inductive, is further provided. The performance of the proposed identifier, which subsumes a conventional gradient descent algorithm, is illustrated via detailed computer simulations.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3