Performance of mixed effects models and generalized estimating equations for continuous outcomes in partially clustered trials including both independent and paired data

Author:

Lange Kylie M.12ORCID,Sullivan Thomas R.12,Kasza Jessica3ORCID,Yelland Lisa N.12ORCID

Affiliation:

1. School of Public Health The University of Adelaide Adelaide South Australia Australia

2. Women and Kids Theme South Australian Health and Medical Research Institute Adelaide South Australia Australia

3. School of Public Health and Preventive Medicine Monash University Melbourne Victoria Australia

Abstract

Many clinical trials involve partially clustered data, where some observations belong to a cluster and others can be considered independent. For example, neonatal trials may include infants from single or multiple births. Sample size and analysis methods for these trials have received limited attention. A simulation study was conducted to (1) assess whether existing power formulas based on generalized estimating equations (GEEs) provide an adequate approximation to the power achieved by mixed effects models, and (2) compare the performance of mixed models vs GEEs in estimating the effect of treatment on a continuous outcome. We considered clusters that exist prior to randomization with a maximum cluster size of 2, three methods of randomizing the clustered observations, and simulated datasets with uninformative cluster size and the sample size required to achieve 80% power according to GEE‐based formulas with an independence or exchangeable working correlation structure. The empirical power of the mixed model approach was close to the nominal level when sample size was calculated using the exchangeable GEE formula, but was often too high when the sample size was based on the independence GEE formula. The independence GEE always converged and performed well in all scenarios. Performance of the exchangeable GEE and mixed model was also acceptable under cluster randomization, though under‐coverage and inflated type I error rates could occur with other methods of randomization. Analysis of partially clustered trials using GEEs with an independence working correlation structure may be preferred to avoid the limitations of mixed models and exchangeable GEEs.

Funder

National Health and Medical Research Council

Australian Government

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3