Shape memory, mechanical and thermomechanical property comparison in MWCNT and GnP modified Bi‐directional (plain) carbon fiber polymer composites

Author:

Gupta Ritesh1ORCID,Tiwari Nilesh2,Kumar Krishna1,Pandel Upender1

Affiliation:

1. Department of Metallurgical and Materials Engineering Malaviya National Institute of Technology Jaipur Jaipur India

2. EPP Composites Pvt Ltd Rajkot India

Abstract

AbstractThe study presents a comparative analysis of MWCNT and GnP modified epoxy/bi‐directional (Plain) carbon fiber three‐phase shape memory hybrid composites (epoxy/BDP‐CF 3P‐SMHCs) focusing on their mechanical, thermomechanical, and shape memory properties. Fabrication involves preparing nanostructure‐modified epoxy nanocomposites through ultrasonication followed by hand layup technique. The findings revealed that the modified epoxy/BDP‐CF 3P‐SMHCs achieved their optimal performance at a 0.6 wt% concentration of nanostructure, with the tensile strength and modulus increasing by 63.62% and 28.30% for 0.6 wt% MWCNT composite and by 85.44% and 30.62% for 0.6 wt% GnP composite. In addition to the enhancement in tensile properties, improvements were also observed in flexural, ILSS, and thermal properties. These improvements can be attributed to the enhanced interfacial bonding between the polymer and fiber, as confirmed by morphological analysis of fractured tensile samples using FESEM. GnP‐modified epoxy/BDP‐CF 3P‐SMHCs outperformed MWCNT ones due to GnP's sheet structure aligning parallel to the load and larger surface area facilitating enhanced interaction with the matrix. Despite polymer modification, the shape recovery ratio values remained high, with 98.99% for unmodified composite, 97.95% for 0.6 wt% MWCNT modified epoxy/BDP‐CF 3P‐SMHCs, and 97.54% for 0.6 wt% GnP modified epoxy/BDP‐CF 3P‐SMHCs, all exceeding 90%, indicating no compromise in performance.Highlights 0.6 wt% optimal nanoparticle concentration boosts composite properties. GnP‐modified composites show superior properties increases over MWCNT. Tensile, flexural, thermal gains and ILSS link to better bond, FESEM proves. Recovery ratios over 90% in hybrid composites ensure peak performance.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3