Modeling correlated pairs of mammogram images

Author:

Jiang Shu1ORCID,Colditz Graham A.1

Affiliation:

1. Division of Public Health Sciences Washington University School of Medicine St. Louis Missouri USA

Abstract

Mammography remains the primary screening strategy for breast cancer, which continues to be the most prevalent cancer diagnosis among women globally. Because screening mammograms capture both the left and right breast, there is a nonnegligible correlation between the pair of images. Previous studies have explored the concept of averaging between the pair of images after proper image registration; however, no comparison has been made in directly utilizing the paired images. In this paper, we extend the bivariate functional principal component analysis over triangulations to jointly characterize the pair of imaging data bounded in an irregular domain and then nest the extracted features within the survival model to predict the onset of breast cancer. The method is applied to our motivating data from the Joanne Knight Breast Health Cohort at Siteman Cancer Center. Our findings indicate that there was no statistically significant difference in model discrimination performance between averaging the pair of images and jointly modeling the two images. Although the breast cancer study did not reveal any significant difference, it is worth noting that the methods proposed here can be readily extended to other studies involving paired or multivariate imaging data.

Funder

Breast Cancer Research Foundation

Division of Cancer Prevention, National Cancer Institute

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3