Unfitted generalized finite element methods for Dirichlet problems without penalty or stabilization

Author:

Zhang Qinghui12ORCID

Affiliation:

1. School of Science Harbin Institute of Technology Shenzhen People's Republic of China

2. Guangdong Province Key Laboratory of Computational Science Guangzhou People's Republic of China

Abstract

AbstractUnfitted finite element methods (FEM) have attractive merits for problems with evolving or geometrically complex boundaries. Conventional unfitted FEMs incorporate penalty terms, parameters, or Lagrange multipliers to impose the Dirichlet boundary condition weakly. This to some extent increases computational complexity in implementation. In this article, we propose an unfitted generalized FEM (GFEM) for the Dirichlet problem, which is free from any penalty or stabilization. This is achieved by means of partition of unity frameworks of GFEM and designing a set of new enrichments for the Dirichlet boundary. The enrichments are divided into two groups: the one is used to impose the Dirichlet boundary condition strongly, and the other one serves as energy space of variational formulations. The shape functions in energy space vanish at the boundary so that standard variational formulae like those in the conventional fitted FEM can be applied, and thus the penalty and stabilization are not needed. The optimal convergence rate in the energy norm is proven rigorously. Numerical experiments and comparisons with other methods are executed to verify the theoretical result and effectiveness of the algorithm. The conditioning of new method is numerically shown to be of same order as that of the standard FEM.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Applied Mathematics,Computational Mathematics,Numerical Analysis,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3