A biomimetic, triggered‐release micelle formulation of methotrexate and celastrol controls collagen‐induced arthritis in mice

Author:

Ren He1,Wu Zewen2,Li Jingxuan2,Zhang Nan1,Nah Coo Yee1,Li Jiexin1,Zhang Jingyu1ORCID,Lovell Jonathan F.3,Zhang Liyun2,Zhang Yumiao1ORCID

Affiliation:

1. School of Chemical Engineering and Technology Key Laboratory of Systems Bioengineering (Ministry of Education) Tianjin University Tianjin China

2. Third Hospital of Shanxi Medical University Shanxi Bethune Hospital Shanxi Academy of Medical Sciences Tongji Shanxi Hospital Taiyuan China

3. Department of Biomedical Engineering The State University of New York at Buffalo Buffalo USA

Abstract

AbstractRheumatoid arthritis (RA) is a systemic autoimmune disease that leads to the destruction of articular cartilage and bone. RA is characterized by immune cell infiltration and abnormal proliferation of synoviocytes in the joints. Herein, we developed a biomimetic formulation via co‐loading the anti‐inflammatory agent Celastrol (Cel) along with the stabilizer Vitamin K (VK) in antirheumatic methotrexate (MTX)‐conjugated Pluronic F127 (F127) micelles. Micelles were then coated with B cell derived membrane, yielding MTX loaded Cel Micelle (CeViM)‐micelle@B, which were investigated for RA treatment. VK, used at levels well within safety margins, was identified as a carrier compound that could stabilize Cel within micelles, increasing the encapsulation efficiency of Cel. In addition, MTX, a front‐line RA therapeutic, was chemically grafted to F127 via a responsive linker sensitive to the chemically reducing environments. As such, CeViM‐micelle@B released pristine MTX in response to the intracellular reducing environments, which combined with Cel to suppress pro‐inflammatory responses. B cell membrane coating enhanced accumulation of CeViM‐micelle@B in joints, leading to a 75% decrease of inflammatory cytokine secretion in vitro, and significantly ameliorated cartilage and bone structures in the collagen‐induced arthritis murine model. Taken together, this biomimetic nanoparticle holds potential as a next‐generation targeted RA treatment.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3