Otolith microchemistry highlights the importance of extensive connectivity for conservation of an iconic migratory fish in a large tropical river basin

Author:

Pease Allison A.1,Jacobs Gregory R.2,Mendoza‐Carranza Manuel3,Rodiles‐Hernández Rocío4,Wenger Seth J.2,Capps Krista A.25

Affiliation:

1. School of Natural Resources University of Missouri Columbia Missouri USA

2. Odum School of Ecology University of Georgia Athens Georgia USA

3. Departamento de Ciencias de la Sustentabilidad El Colegio de la Frontera Sur (ECOSUR) Villahermosa Mexico

4. Departamento de Conservación de la Biodiversidad El Colegio de la Frontera Sur (ECOSUR), San Cristóbal de las Casas Chiapas Mexico

5. Savannah River Ecology Laboratory University of Georgia Aiken South Carolina USA

Abstract

Abstract Migratory fishes exert important influences on tropical river food webs, but these species are often most vulnerable to environmental change. Movement patterns of fishes in tropical rivers are also generally poorly understood, hindering conservation efforts. Common snook, Centropomus undecimalis, depend on connected coastal habitats for reproduction and growth and can migrate extensively up rivers when not hindered by barriers to movement. In southern Mexico, they are frequently captured 300 river km or more upstream from the delta of the Usumacinta River. The Usumacinta is a large river system with no mainstem dams, providing an expansive network of connected river, stream and wetland habitats which form a much larger migratory domain that exists in many other systems where common snook have been studied. To assess whether fish captured in different zones were associated with different natal habitats or distinct migratory patterns, variation in common snook otolith chemical signatures was examined in the Usumacinta River from the Gulf of Mexico coast to as far as 600 river km upriver. Otolith microchemistry was useful for characterizing migratory histories of individuals, but there was no clear evidence that fish captured in different river zones used different types of natal habitats. Based on lifetime Sr:Ca in otoliths, a diverse array of movement patterns was evident in the Usumacinta system, with 97% of common snook showing evidence of freshwater habitat use. Prevalent use of riverine habitats by common snook far from the coast reinforces the need to preserve connectivity in the Usumacinta River and other undammed systems supporting migratory species. The natural flow regime and lack of barriers allow for longitudinal and lateral connectivity in this system, providing pathways for migratory species to move extensively and have access to an array of habitats, including productive floodplain lagoons.

Funder

National Geographic Society

National Science Foundation

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3