Adaptive 3D noise level‐guided restoration network for low‐dose positron emission tomography imaging

Author:

Li Wenbo12,Huang Zhenxing1,Zhou Chao3,Zhang Xu3,Fan Wei3,Liang Dong1,Hu Zhanli1ORCID

Affiliation:

1. Lauterbur Research Center for Biomedical Imaging Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen China

2. Shenzhen College of Advanced Technology University of Chinese Academy of Sciences Beijing China

3. Department of Nuclear Medicine Sun Yat‐sen University Cancer Center Guangzhou China

Abstract

AbstractMany deep learning methods have been proposed to improve the quality of low‐dose PET images (LPET), which usually construct end‐to‐end networks with certain radiation dose inputs. However, these approaches have omitted the noise disparity in PET images, which may differ among manufacturers or populations. Therefore, we tend to exploit these noise differences among PET images to achieve adaptive restoration. We proposed a 3D noise level‐guided PET restoration network for LPET including (1) adaptive noise level‐aware subnetwork and (2) LPET restoration subnetwork. The first subnetwork aims to predict the noise level of the given LPET, while the second subnetwork treats the estimated noise level as a priori information to guide the restoration process from LPET to standard‐dose PET images. Experiments were performed on real human head and neck datasets while the peak signal‐to‐noise ratio and structural similarity index measure were used to evaluate LPET recovery performance. Moreover, we also compared the proposed network with several deep‐learning approaches. Experimental results demonstrate that our network with dual‐stage design can perform adaptive restoration for LPET, yielding better visual and quantitative results. In future work, we attempt to apply our method to other imaging tasks and adapt it for clinical practice.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3