Advances in AI‐based cancer cytopathology

Author:

Yang Yan1,Guan Shujuan1,Ou Zihao1,Li Weiqi2,Yan Lizhi1,Situ Bo1ORCID

Affiliation:

1. Department of Laboratory Medicine Nanfang Hospital Southern Medical University Guangzhou China

2. School of Engineering and Materials Science Queen Mary University of London London UK

Abstract

AbstractCytopathological examination plays a crucial role in cancer diagnosis as it reflects the cellular pathology of cancer. However, this process traditionally relies on the visual examination by cytopathologists. Recent advancements in computer and digital imaging technologies have enabled the application of artificial intelligence (AI)‐based models to identify tumor cells in images, thereby assisting cytopathologists in achieving enhanced performance. AI‐based models can improve the accuracy and reproducibility of image evaluation and streamline clinical workflows. Moreover, AI‐based models can analyze a diverse range of sample types, including peripheral blood, urine, ascites, and bone marrow. AI‐based cytopathological recognition can help clinicians screen and diagnose cancer, predict prognosis and recurrence of cancers, such as leukemia, cervical cancer, urothelial carcinoma, and gastric cancer. Additionally, AI‐based models can predict the types of mutations in leukemia. A growing number of studies emphasize the potential of computational image analysis and deep learning‐based AI to build novel diagnostic tools that are conducive to the biomedical field. This review describes the recent developments in AI‐based cytopathological recognition and offers a perspective on how AI tools of cytopathology can help improve cancer diagnosis and prognosis prediction. Future developments in AI model applications can further contribute to the improvement of human health.

Funder

Natural Science Foundation of Guangdong Province

Natural Science Foundation of Guangdong Province for Distinguished Young Scholars

National Natural Science Foundation of China

Publisher

Wiley

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3